파이썬의 주요 컴포넌트 분석
차원 축소를 위해 주성분 분석 (PCA)을 사용하고 싶습니다. numpy 또는 scipy에 이미 있습니까? 또는를 사용하여 내 자신을 굴려야 numpy.linalg.eigh
합니까?
입력 데이터가 상당히 높은 차원 (~ 460 크기)이기 때문에 단일 값 분해 (SVD)를 사용하고 싶지 않으므로 SVD가 공분산 행렬의 고유 벡터를 계산하는 것보다 느릴 것이라고 생각합니다.
나는 언제 어떤 메소드를 사용해야하는지, 그리고 내가 모르는 다른 최적화를 수행 할 때 올바른 결정을 내리는 사전 제작되고 디버깅 된 구현을 찾고자했다.
MDP를 살펴볼 수 있습니다 .
직접 테스트 할 기회는 없었지만 PCA 기능을 위해이를 북마크에 추가했습니다.
몇 달 후 여기에 소규모 PCA와 사진이 있습니다.
#!/usr/bin/env python
""" a small class for Principal Component Analysis
Usage:
p = PCA( A, fraction=0.90 )
In:
A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns
fraction: use principal components that account for e.g.
90 % of the total variance
Out:
p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt
p.dinv: 1/d or 0, see NR
p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2).
eigen[j] / eigen.sum() is variable j's fraction of the total variance;
look at the first few eigen[] to see how many PCs get to 90 %, 95 % ...
p.npc: number of principal components,
e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total.
It's ok to change this; methods use the current value.
Methods:
The methods of class PCA transform vectors or arrays of e.g.
20 variables, 2 principal components and 1000 observations,
using partial matrices U' d' Vt', parts of the full U d Vt:
A ~ U' . d' . Vt' where e.g.
U' is 1000 x 2
d' is diag([ d0, d1 ]), the 2 largest singular values
Vt' is 2 x 20. Dropping the primes,
d . Vt 2 principal vars = p.vars_pc( 20 vars )
U 1000 obs = p.pc_obs( 2 principal vars )
U . d . Vt 1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars ))
fast approximate A . vars, using the `npc` principal components
Ut 2 pcs = p.obs_pc( 1000 obs )
V . dinv 20 vars = p.pc_vars( 2 principal vars )
V . dinv . Ut 20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )),
fast approximate Ainverse . obs: vars that give ~ those obs.
Notes:
PCA does not center or scale A; you usually want to first
A -= A.mean(A, axis=0)
A /= A.std(A, axis=0)
with the little class Center or the like, below.
See also:
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Singular_value_decomposition
Press et al., Numerical Recipes (2 or 3 ed), SVD
PCA micro-tutorial
iris-pca .py .png
"""
from __future__ import division
import numpy as np
dot = np.dot
# import bz.numpyutil as nu
# dot = nu.pdot
__version__ = "2010-04-14 apr"
__author_email__ = "denis-bz-py at t-online dot de"
#...............................................................................
class PCA:
def __init__( self, A, fraction=0.90 ):
assert 0 <= fraction <= 1
# A = U . diag(d) . Vt, O( m n^2 ), lapack_lite --
self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False )
assert np.all( self.d[:-1] >= self.d[1:] ) # sorted
self.eigen = self.d**2
self.sumvariance = np.cumsum(self.eigen)
self.sumvariance /= self.sumvariance[-1]
self.npc = np.searchsorted( self.sumvariance, fraction ) + 1
self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6 else 0
for d in self.d ])
def pc( self ):
""" e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """
n = self.npc
return self.U[:, :n] * self.d[:n]
# These 1-line methods may not be worth the bother;
# then use U d Vt directly --
def vars_pc( self, x ):
n = self.npc
return self.d[:n] * dot( self.Vt[:n], x.T ).T # 20 vars -> 2 principal
def pc_vars( self, p ):
n = self.npc
return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T # 2 PC -> 20 vars
def pc_obs( self, p ):
n = self.npc
return dot( self.U[:, :n], p.T ) # 2 principal -> 1000 obs
def obs_pc( self, obs ):
n = self.npc
return dot( self.U[:, :n].T, obs ) .T # 1000 obs -> 2 principal
def obs( self, x ):
return self.pc_obs( self.vars_pc(x) ) # 20 vars -> 2 principal -> 1000 obs
def vars( self, obs ):
return self.pc_vars( self.obs_pc(obs) ) # 1000 obs -> 2 principal -> 20 vars
class Center:
""" A -= A.mean() /= A.std(), inplace -- use A.copy() if need be
uncenter(x) == original A . x
"""
# mttiw
def __init__( self, A, axis=0, scale=True, verbose=1 ):
self.mean = A.mean(axis=axis)
if verbose:
print "Center -= A.mean:", self.mean
A -= self.mean
if scale:
std = A.std(axis=axis)
self.std = np.where( std, std, 1. )
if verbose:
print "Center /= A.std:", self.std
A /= self.std
else:
self.std = np.ones( A.shape[-1] )
self.A = A
def uncenter( self, x ):
return np.dot( self.A, x * self.std ) + np.dot( x, self.mean )
#...............................................................................
if __name__ == "__main__":
import sys
csv = "iris4.csv" # wikipedia Iris_flower_data_set
# 5.1,3.5,1.4,0.2 # ,Iris-setosa ...
N = 1000
K = 20
fraction = .90
seed = 1
exec "\n".join( sys.argv[1:] ) # N= ...
np.random.seed(seed)
np.set_printoptions( 1, threshold=100, suppress=True ) # .1f
try:
A = np.genfromtxt( csv, delimiter="," )
N, K = A.shape
except IOError:
A = np.random.normal( size=(N, K) ) # gen correlated ?
print "csv: %s N: %d K: %d fraction: %.2g" % (csv, N, K, fraction)
Center(A)
print "A:", A
print "PCA ..." ,
p = PCA( A, fraction=fraction )
print "npc:", p.npc
print "% variance:", p.sumvariance * 100
print "Vt[0], weights that give PC 0:", p.Vt[0]
print "A . Vt[0]:", dot( A, p.Vt[0] )
print "pc:", p.pc()
print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0"
x = np.ones(K)
# x = np.ones(( 3, K ))
print "x:", x
pc = p.vars_pc(x) # d' Vt' x
print "vars_pc(x):", pc
print "back to ~ x:", p.pc_vars(pc)
Ax = dot( A, x.T )
pcx = p.obs(x) # U' d' Vt' x
print "Ax:", Ax
print "A'x:", pcx
print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf )
b = Ax # ~ back to original x, Ainv A x
back = p.vars(b)
print "~ back again:", back
print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf )
# end pca.py
PCA using numpy.linalg.svd
is super easy. Here's a simple demo:
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import lena
# the underlying signal is a sinusoidally modulated image
img = lena()
t = np.arange(100)
time = np.sin(0.1*t)
real = time[:,np.newaxis,np.newaxis] * img[np.newaxis,...]
# we add some noise
noisy = real + np.random.randn(*real.shape)*255
# (observations, features) matrix
M = noisy.reshape(noisy.shape[0],-1)
# singular value decomposition factorises your data matrix such that:
#
# M = U*S*V.T (where '*' is matrix multiplication)
#
# * U and V are the singular matrices, containing orthogonal vectors of
# unit length in their rows and columns respectively.
#
# * S is a diagonal matrix containing the singular values of M - these
# values squared divided by the number of observations will give the
# variance explained by each PC.
#
# * if M is considered to be an (observations, features) matrix, the PCs
# themselves would correspond to the rows of S^(1/2)*V.T. if M is
# (features, observations) then the PCs would be the columns of
# U*S^(1/2).
#
# * since U and V both contain orthonormal vectors, U*V.T is equivalent
# to a whitened version of M.
U, s, Vt = np.linalg.svd(M, full_matrices=False)
V = Vt.T
# PCs are already sorted by descending order
# of the singular values (i.e. by the
# proportion of total variance they explain)
# if we use all of the PCs we can reconstruct the noisy signal perfectly
S = np.diag(s)
Mhat = np.dot(U, np.dot(S, V.T))
print "Using all PCs, MSE = %.6G" %(np.mean((M - Mhat)**2))
# if we use only the first 20 PCs the reconstruction is less accurate
Mhat2 = np.dot(U[:, :20], np.dot(S[:20, :20], V[:,:20].T))
print "Using first 20 PCs, MSE = %.6G" %(np.mean((M - Mhat2)**2))
fig, [ax1, ax2, ax3] = plt.subplots(1, 3)
ax1.imshow(img)
ax1.set_title('true image')
ax2.imshow(noisy.mean(0))
ax2.set_title('mean of noisy images')
ax3.imshow((s[0]**(1./2) * V[:,0]).reshape(img.shape))
ax3.set_title('first spatial PC')
plt.show()
You can use sklearn:
import sklearn.decomposition as deco
import numpy as np
x = (x - np.mean(x, 0)) / np.std(x, 0) # You need to normalize your data first
pca = deco.PCA(n_components) # n_components is the components number after reduction
x_r = pca.fit(x).transform(x)
print ('explained variance (first %d components): %.2f'%(n_components, sum(pca.explained_variance_ratio_)))
matplotlib.mlab has a PCA implementation.
SVD should work fine with 460 dimensions. It takes about 7 seconds on my Atom netbook. The eig() method takes more time (as it should, it uses more floating point operations) and will almost always be less accurate.
If you have less than 460 examples then what you want to do is diagonalize the scatter matrix (x - datamean)^T(x - mean), assuming your data points are columns, and then left-multiplying by (x - datamean). That might be faster in the case where you have more dimensions than data.
You can quite easily "roll" your own using scipy.linalg
(assuming a pre-centered dataset data
):
covmat = data.dot(data.T)
evs, evmat = scipy.linalg.eig(covmat)
Then evs
are your eigenvalues, and evmat
is your projection matrix.
If you want to keep d
dimensions, use the first d
eigenvalues and first d
eigenvectors.
Given that scipy.linalg
has the decomposition and numpy the matrix multiplications, what else do you need?
I just finish reading the book Machine Learning: An Algorithmic Perspective. All code examples in the book was written by Python(and almost with Numpy). The code snippet of chatper10.2 Principal Components Analysis maybe worth a reading. It use numpy.linalg.eig.
By the way, I think SVD can handle 460 * 460 dimensions very well. I have calculate a 6500*6500 SVD with numpy/scipy.linalg.svd on a very old PC:Pentium III 733mHz. To be honest, the script needs a lot of memory(about 1.xG) and a lot of time(about 30 minutes) to get the SVD result. But I think 460*460 on a modern PC will not be a big problem unless u need do SVD a huge number of times.
You do not need full Singular Value Decomposition (SVD) at it computes all eigenvalues and eigenvectors and can be prohibitive for large matrices. scipy and its sparse module provide generic linear algrebra functions working on both sparse and dense matrices, among which there is the eig* family of functions :
http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#matrix-factorizations
Scikit-learn provides a Python PCA implementation which only support dense matrices for now.
Timings :
In [1]: A = np.random.randn(1000, 1000)
In [2]: %timeit scipy.sparse.linalg.eigsh(A)
1 loops, best of 3: 802 ms per loop
In [3]: %timeit np.linalg.svd(A)
1 loops, best of 3: 5.91 s per loop
Here is another implementation of a PCA module for python using numpy, scipy and C-extensions. The module carries out PCA using either a SVD or the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm which is implemented in C.
If you're working with 3D vectors, you can apply SVD concisely using the toolbelt vg. It's a light layer on top of numpy.
import numpy as np
import vg
vg.principal_components(data)
There's also a convenient alias if you only want the first principal component:
vg.major_axis(data)
I created the library at my last startup, where it was motivated by uses like this: simple ideas which are verbose or opaque in NumPy.
참고URL : https://stackoverflow.com/questions/1730600/principal-component-analysis-in-python
'development' 카테고리의 다른 글
TypeScript에서 열거 형과 같은 유형을 만드는 방법은 무엇입니까? (0) | 2020.08.03 |
---|---|
iPhone Simulator에서 위치 설정 (0) | 2020.08.03 |
jQuery를 사용하여 클릭시 앵커 텍스트 / href를 얻는 방법은 무엇입니까? (0) | 2020.08.03 |
Gradle에 작업 종속성을 나열하는 방법이 있습니까? (0) | 2020.08.03 |
요소가 부모의 자식인지 확인 (0) | 2020.08.03 |