word2vec bin 파일을 텍스트로 변환
word2vec 사이트 에서 GoogleNews-vectors-negative300.bin.gz를 다운로드 할 수 있습니다. .bin 파일 (약 3.4GB)은 나에게 유용하지 않은 바이너리 형식입니다. 토마스 Mikolov은 우리를 보장 "(즉, 더 많은 디스크 공간을 차지합니다하지만) 텍스트 형식으로 바이너리 형식을 변환하는 매우 간단합니다. 거리 도구의 코드를 확인,이 바이너리 파일을 읽을 오히려 사소한."고 불행히도 나는 http://word2vec.googlecode.com/svn/trunk/distance.c 를 이해하기에 충분한 C를 모릅니다 .
기발한 gensim 또한이 작업을 수행하지만, 내가 찾은 모든 튜토리얼 변환하는 방법에 대한 것으로 보일 수 에서 , 텍스트가 아닌 다른 방법을.
누군가가 gensim이 텍스트를 내보내도록 C 코드를 수정하거나 지침을 제안 할 수 있습니까?
이 코드를 사용하여 바이너리 모델을로드 한 다음 모델을 텍스트 파일에 저장합니다.
from gensim.models.keyedvectors import KeyedVectors
model = KeyedVectors.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('path/to/GoogleNews-vectors-negative300.txt', binary=False)
노트 :
위 코드는 gensim의 새 버전입니다. 들어 이전 버전,이 코드를 사용 :
from gensim.models import word2vec
model = word2vec.Word2Vec.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('path/to/GoogleNews-vectors-negative300.txt', binary=False)
word2vec-toolkit 메일 링리스트에서 Thomas Mensink는 .bin 파일을 텍스트로 변환하는 작은 C 프로그램의 형태로 답변 을 제공했습니다 . distance.c 파일을 수정 한 것입니다. 원래 distance.c를 아래의 Thomas의 코드로 바꾸고 word2vec (make clean; make)를 다시 작성하고 컴파일 된 distance의 이름을 readbin으로 변경했습니다. 그런 다음 ./readbin vector.bin
vector.bin의 텍스트 버전을 만듭니다.
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <malloc.h>
const long long max_size = 2000; // max length of strings
const long long N = 40; // number of closest words that will be shown
const long long max_w = 50; // max length of vocabulary entries
int main(int argc, char **argv) {
FILE *f;
char file_name[max_size];
float len;
long long words, size, a, b;
char ch;
float *M;
char *vocab;
if (argc < 2) {
printf("Usage: ./distance <FILE>\nwhere FILE contains word projections in the BINARY FORMAT\n");
return 0;
}
strcpy(file_name, argv[1]);
f = fopen(file_name, "rb");
if (f == NULL) {
printf("Input file not found\n");
return -1;
}
fscanf(f, "%lld", &words);
fscanf(f, "%lld", &size);
vocab = (char *)malloc((long long)words * max_w * sizeof(char));
M = (float *)malloc((long long)words * (long long)size * sizeof(float));
if (M == NULL) {
printf("Cannot allocate memory: %lld MB %lld %lld\n", (long long)words * size * sizeof(float) / 1048576, words, size);
return -1;
}
for (b = 0; b < words; b++) {
fscanf(f, "%s%c", &vocab[b * max_w], &ch);
for (a = 0; a < size; a++) fread(&M[a + b * size], sizeof(float), 1, f);
len = 0;
for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
len = sqrt(len);
for (a = 0; a < size; a++) M[a + b * size] /= len;
}
fclose(f);
//Code added by Thomas Mensink
//output the vectors of the binary format in text
printf("%lld %lld #File: %s\n",words,size,file_name);
for (a = 0; a < words; a++){
printf("%s ",&vocab[a * max_w]);
for (b = 0; b< size; b++){ printf("%f ",M[a*size + b]); }
printf("\b\b\n");
}
return 0;
}
I removed the "\b\b" from the printf
.
By the way, the resulting text file still contained the text word and some unnecessary whitespace which I did not want for some numerical calculations. I removed the initial text column and the trailing blank from each line with bash commands.
cut --complement -d ' ' -f 1 GoogleNews-vectors-negative300.txt > GoogleNews-vectors-negative300_tuples-only.txt
sed 's/ $//' GoogleNews-vectors-negative300_tuples-only.txt
the format is IEEE 754 single-precision binary floating-point format: binary32 http://en.wikipedia.org/wiki/Single-precision_floating-point_format They use little-endian.
Let do an example:
- First line is string format: "3000000 300\n" (vocabSize & vecSize, getByte till byte=='\n')
Next line include the vocab word first, and then (300*4 byte of float value, 4 byte for each dimension):
getByte till byte==32 (space). (60 47 115 62 32 => <\s>[space])
then each next 4 byte will represent one float number
next 4 byte: 0 0 -108 58 => 0.001129150390625.
You can check the wikipedia link to see how, let me do this one as example:
(little-endian -> reverse order) 00111010 10010100 00000000 00000000
- first is sign bit => sign = 1 (else = -1)
- next 8 bits => 117 => exp = 2^(117-127)
- next 23 bits => pre = 0*2^(-1) + 0*2^(-2) + 1*2^(-3) + 1*2^(-5)
value = sign * exp * pre
You can load the binary file in word2vec, and then save the text version like this:
from gensim.models import word2vec
model = word2vec.Word2Vec.load_word2vec_format('Path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save("file.txt")
`
I am using gensim to work with the GoogleNews-vectors-negative300.bin and I am including a binary = True
flag while loading the model.
from gensim import word2vec
model = word2vec.Word2Vec.load_word2vec_format('Path/to/GoogleNews-vectors-negative300.bin', binary=True)
Seems to be working fine.
I had a similar issue, I wanted to get bin/non-bin(gensim) models output as CSV.
here is the code which does that on python, it assumes you have gensim installed:
https://gist.github.com/dav009/10a742de43246210f3ba
Here is the code I use:
import codecs
from gensim.models import Word2Vec
def main():
path_to_model = 'GoogleNews-vectors-negative300.bin'
output_file = 'GoogleNews-vectors-negative300_test.txt'
export_to_file(path_to_model, output_file)
def export_to_file(path_to_model, output_file):
output = codecs.open(output_file, 'w' , 'utf-8')
model = Word2Vec.load_word2vec_format(path_to_model, binary=True)
print('done loading Word2Vec')
vocab = model.vocab
for mid in vocab:
#print(model[mid])
#print(mid)
vector = list()
for dimension in model[mid]:
vector.append(str(dimension))
#line = { "mid": mid, "vector": vector }
vector_str = ",".join(vector)
line = mid + "\t" + vector_str
#line = json.dumps(line)
output.write(line + "\n")
output.close()
if __name__ == "__main__":
main()
#cProfile.run('main()') # if you want to do some profiling
convertvec is a small tool to convert vectors between different formats for the word2vec library.
Convert vectors from binary to plain text:
./convertvec bin2txt input.bin output.txt
Convert vectors from plain text to binary:
./convertvec txt2bin input.txt output.bin
If you get the Error:
ImportError: No module named models.word2vec
then it is because there was an API update. This will work:
from gensim.models.keyedvectors import KeyedVectors
model = KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('./GoogleNews-vectors-negative300.txt', binary=False)
Just a quick update as now there is easier way.
If you are using word2vec
from https://github.com/dav/word2vec there is additional option called -binary
which accept 1
to generate binary file or 0
to generate text file. This example comes from demo-word.sh
in the repo:
time ./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 0 -iter 15
참고URL : https://stackoverflow.com/questions/27324292/convert-word2vec-bin-file-to-text
'development' 카테고리의 다른 글
Composer : 최소 안정성 수준이 다른 필수 패키지 (0) | 2020.12.11 |
---|---|
"find"명령 결과를 Bash에 배열로 저장하려면 어떻게해야합니까? (0) | 2020.12.11 |
java.lang.ClassCastException : java.util.LinkedHashMap을 com.testing.models.Account로 캐스트 할 수 없습니다. (0) | 2020.12.11 |
Microsoft Edge의 사용자 에이전트 문자열 이름은 무엇입니까? (0) | 2020.12.11 |
Swift에서 환경 변수 참조 (0) | 2020.12.11 |